Maths FULL Portion Test 19/03/2023

CBSE Science and Maths: Mathematics

Q. 1 If one root of the equation $(k-1) x^{2}-10 x+3=0$ is the reciprocal of the other, then the value of k is:
$\bigcirc 4$
$\bigcirc 3$
○ 1

- 2
Q. 2 LCM of 3,5 and 15 is

○ 45

- 30

○ 15

- 60
Q. 3 If one of the zeroes of the quadratic polynomial $(k-1) x^{2}+k x+1$ is -3 , then the value of k is
$\bigcirc \frac{4}{3}$
- $-\frac{4}{3}$
$\bigcirc \frac{2}{3}$
$-\frac{2}{3}$
Q. 4 A quadratic polynomial whose zeroes are -3 and 4 , is
$x^{2}-x+12$
$x^{2}+x+12$
$\frac{x^{2}}{2}-\frac{x}{2}-6$
$2 x^{2}+2 x-24$
Q. 5 If $\operatorname{HCF}(16, y)=8$ and $\operatorname{LCM}(16, y)=48$, then the value of y is

○ 24
○ 16
○ 8

- 48
Q. 6 Which of the following equations has the sum of its roots as 3 ?
$2 x^{2}-3 x+6=0$
$-x^{2}+3 x-3=0$
$\sqrt{2} x^{2}-\frac{3}{\sqrt{2}} x+1=0$
- $3 x^{2}-3 x+3=0$
Q. 7 The quadratic equation $2 x^{2}-\sqrt{5} x+1=0$ has
- two distinct real roots
- two equal real roots
- no real roots
more than 2 real roots
Q. 8 In the given figure, if $\angle A O B=125^{\circ}$, then $\angle C O D=$

62.5°
- 45°
- 35°
- 55°
Q. 9 A triangle $A B C$ is drawn to circumscribe a circle as shown. If $A B=13 \mathrm{~cm}, B C=14 \mathrm{~cm}$, and $A E=7 \mathrm{~cm}$, then AC =

- 15 cm
- 12 cm
- 18 cm
- 21 cm
Q. 10 In the figure there are two concentric circles with centre O. PRT and PQS are tangents to the inner circle from a point P lying on the outer circle. If $P R=5 \mathrm{~cm}$, then $P S=$

© Cerebroid Education Pvt. Ltd.
- 8 cm
- 10 cm
- 9 cm
- 12 cm
Q. 11 In the figure, tangents $C B$ and $C A$ are drawn from a point to a circle with centre O such that $\angle A O B=130^{\circ}$. $\angle \mathrm{ACB}=$

- 60°
- 40°
- 50°
- 45°
Q. 12

A wire bent in the form of an equilateral triangle, encloses and area of $121 \sqrt{3} \mathrm{~cm}^{2}$. If the wire is bent in the form of a circle, the diameter of the circle will be:
[Take $\pi=22 / 7$]

- 21 cm
- 10.5 cm
- 28 cm
- 14 cm
- $1 / 3$

2/3
-5/6

- 1
Q. 14 The sum of all 2 digit numbers, which yield a remainder of 1 when divided by 7 is:
- 735
- 741
- 763
- 787
Q. 15 The first term of an A.P. is 5 , the last term is 45 , and the sum is 400 . The number of terms and common difference is, respectively:
- $16, \frac{8}{3}$
- 16,4
- 15,4
- $14, \frac{5}{2}$
Q. 16 The 'k'th term of the A.P. $3,10,17, \ldots$ is 84 more than its 13 th term. The value of ' k ' is:
- 22
- 23
- 24
- 25
Q. 17 The $\mathrm{n}^{\text {th }}$ term of an A.P. is $(7-3 n)$. The common difference of the A.P. is:
- 3
- -3
- 7
- -7
Q. 18 The following pair of linear equations are to be solved by "elimination by equating coefficients".
(1) $x+y=5$
(2) $2 x-3 y=4$

Which of the following are the correct ways to proceed?
$\square \quad$ Multiply equation (1) by 3 and add the two equations
$\square \quad$ Multiply equation (1) by 3 and subtract (1) from (2)Multiply equation (2) by 5 and add the two equationsMultiply equation (1) by 2 and add the two equations
Q. 19 In triangles $A B C$ and $D E F, \angle B=\angle E, \angle F=\angle C$ and $A B=3 D E$. Then, the two triangles are:
congruent but not similar
similar but not congruent
neither congruent nor similar

- congruent and similar
Q. 20 In a rectangle, Length $=8 \mathrm{~cm}$, Breadth $=6 \mathrm{~cm}$. Then its diagonal $=$
- 9 cm
- 14 cm
- 10 cm
- 12 cm
Q. 21 Given that $\sin \alpha=\frac{1}{2}$ and $\sec \beta=\frac{2}{\sqrt{3}}$, then the value of $(\alpha+\beta)=$
- 0°
- 30°
- 60°
- 90°
Q. 22 If $\sec \theta \cdot \sin \theta=0$, then $\theta=$
- 0°
- 30°
- 60°
- 90°
Q. $23(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=$

0
$\bigcirc 1$

- 2
- ו-
Q. 24 If $\sqrt{3} \sin \theta-\cos \theta=0$ and $0^{\circ} \leqslant \theta \leqslant 90^{\circ}$, then $\theta=$
- 0°
- 30°
- 60°
- 90°
Q. 25 The top of two poles of height 16 m and 10 m are connected by a wire of length 'I' metre. If the wire makes an angle of 30° with the horizontal, then ' 1 ' =
- 12 m
- $6 \sqrt{ } 2 m$
- $6 \sqrt{ } 3 \mathrm{~m}$
- $5 \sqrt{ } 3 \mathrm{~m}$
Q. 26 A tower 30 m high casts a shadow $10 \sqrt{ } 3 \mathrm{~m}$ in length. The angle of elevation of the sun from the tip of the shadow is:
- 30°
- 45°
-60
Q. 27 In the following table, ' x ' and ' w ' are, respectively,

Class Interval	Frequency	Cumulative Frequency
$0-10$	5	5
$10-20$	7	w
$20-30$	x	18
$30-40$	5	z
$40-50$	y	30

- 12 and 6

12 and 30

- 5 and 10
- 6 and 12
Q. 28

A student prepared graphs as shown below to solve a pair of linear equations in two variables. Equation 'B' is:

$x-2 y-4=0$
$x-2 y-2=0$
$x+2 y=2$
$2 x+y-2=0$
Q. $29 \quad A O B C$ is a rectangle whose three vertices are vertices $A(0,3), O(0,0)$ and $B(5,0)$. The length of its diagonal is:

- 3
$\bigcirc 4$
○ 5
$\bigcirc \sqrt{ } 34$
Q. 30
P is a point on the x-axis with an abscissa of -12 and Q is a point on the y-axis with an ordinate of $-16 . M$ is a point on $P Q$ such that $P M: M Q=4: 1$. Then the measure of $P M$ is:

16 units

- 20 units
- 12 units
- 8 units
Q. 31

A circle has its centre at the origin and a point $P(5,0)$ lies on it. Which of the following points lie inside the circle?
$\square \quad(4,3)$
$\square \quad(-4,9 / 2)$
$\square \quad(3,3)$
$\square \quad(5 / 2,-4)$
Q. 32

The point on x-axis which is equidistant from $(2,-5)$ and $(-2,9)$ is
$(-7,0)$
O $(7,0)$

- $(5,0)$
$(-5,0)$
Q. 33

The points $(1,1),(-1,-1)$ and $(-\sqrt{ } 3, \sqrt{ } 3)$ are
vertices of an isosceles triangle

- vertices of a scalene triangle
- vertices of an equilateral triangle
collinear

The following table is constructed to find the mean of a set of grouped data. If assumed mean is taken as 50 , the value of J will be:

Class Interval	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{d}_{\mathbf{i}}$	J
$40-44$	A	4	K	$\mathbf{f}_{\mathbf{i}} \mathbf{d}_{\mathbf{i}}$
$44-48$	B	6	L	S
$48-52$	C	10	M	U
$52-56$	D	14	N	V
$56-60$	E	10	P	W
$60-64$	F	8		X

$\bigcirc 8$

- -32
- -8
- 32
Q. 35

The following table is constructed to analyze a set of grouped data. The assumed mean has been taken as:

Class Interval	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{c . f .}$	$\mathbf{d}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{d}_{\mathbf{i}}$
$5-7$	6	70	70	-6	-420
$7-9$	8	120	190	-4	-480
$9-11$	10	32	222	-2	-64
$11-13$	12	100	322	0	0
$13-15$	14	45	367	2	90
$15-17$	16	28	395	4	112
$17-19$	18	5	400	6	30
		Σf_{i}			$\Sigma \mathrm{f}_{\mathbf{i}} \mathrm{d}_{\mathbf{i}}$

○ 8

- 10

○ 12

