Q. 1 Which of the following is not a quadratic equation?
$2(x-1)^{2}=4 x^{2}-2 x+1$

- $2 x-x^{2}=x^{2}+5$
$(\sqrt{2} x+\sqrt{3})^{2}=3 x^{2}-5 x$
$\left(x^{2}+2 x\right)^{2}=x^{4}+3+4 x^{2}$
Q. 2 The value of k for which the quadratic equation $k x(x-2)+6=0$ has two equal roots:
$\bigcirc 4$
- 8

○ 6
○ 16
Q. $3 \quad A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ Then A^{3} is
$\bigcirc\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\bigcirc\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
○ $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
O $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

$$
\text { Q. } 4 \text { If } A=\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right], B=\left[\begin{array}{cc}
3 & 4 \\
-1 & -2
\end{array}\right], C=\left[\begin{array}{cc}
-3 & 1 \\
0 & -2
\end{array}\right] \text {, }
$$

then the matrix $A C B$ is

O $\left[\begin{array}{cc}-15 & -7 \\ -30 & -14\end{array}\right]$
○ $\left[\begin{array}{ll}-18 & -24 \\ -36 & -48\end{array}\right]$
O $\left[\begin{array}{ll}-28 & -35 \\ -40 & -18\end{array}\right]$
O $\left[\begin{array}{ll}-13 & -22 \\ -29 & -46\end{array}\right]$

The number line above represents the solution to the inequation:
$-3<x<5, x \in R$
$-3 \leq x \leq 5, x \in Z$
$-3<x<5, x \in Z$
$-3 \leq x \leq 5, x \in R$
Q. 6

The above diagram represents the solution set of the equation:
$x-3(2+x)<2(3 x-1), x \in\{-3,-2,-1,0,1,2,3\}$
$x-3(2+x)>3(2 x-1), x \in\{-3,-2,-1,0,1,2,3\}$
$x-3(2+x)>2(3 x+1), x \in\{-3,-2,-1,0,1,2,3\}$
Q. 7 If $(x+5)$ is the mean proportion between $(x+2)$ and $(x+9)$, then the value of x is:

○ 6
○ 7

- $15 / 2$
$\bigcirc 8$
Q. 8 When $4 x^{2}+5 x+3$ is divided by $(2 x+1)$, the remainder is:
- -3

○ 3
-3/2
$-3 / 2$
Q. 9 If $(2 x+1)$ is a factor of $6 x^{3}+5 x^{2}+a x-2$, the value of ' a ' is:

○ 7
O -3

- -6

○ 8
Q. 10 If $(x-2)$ is a factor of $2 x^{3}-x^{2}+p x-2$, the value of ' p ' is:
$\bigcirc 11$

- -3

O -5
○ 8
Q. 11 If $(\mathrm{x}+4)$ is a factor of the polynomial $x^{2}-x-(2+k)$ then value of k is

- 9

○ 6

- -9
Q. 12 The 25 th term of the A.P. $-4,-7,-10, \ldots$ is:
- -76
- -79
- -73
- -75
Q. 13 In the given figure PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q . If $\mathrm{PA}=12 \mathrm{~cm}, \mathrm{QC}=\mathrm{DQ}=3 \mathrm{~cm}$, then $\mathrm{PC}+\mathrm{PD}=$

- 9 cm
- 12 cm
- 15 cm
- 18 cm
Q. 14 The length of a tangent drawn from a point 8 cm away from the centre of a circle of diameter 12 cm is:
- $3 \sqrt{7} \mathrm{~cm}$
- 4 cm
- $2 \sqrt{7} \mathrm{~cm}$
- 6 cm
Q. 15

In the figure, QR is a common tangent to the given circles, touching externally at point T . The tangent at T meets $Q R$ at P. If $P T=3.8 \mathrm{~cm}$, then the length of $Q R$ is

- 3.8 cm
- 7.6 cm
- 5.7 cm
- 1.9 cm
Q. 16

A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at point Q so that $O Q$ $=12 \mathrm{~cm}$. Length PQ is:

- 12 cm
- 13 cm
- 8.5 cm
- $\sqrt{119} \mathrm{~cm}$
Q. 17 From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm , the pair of tangents $P Q$ and $P R$ to the circle are drawn. Then the area of the quadrilateral $P Q O R$ is:

- $60 \mathrm{~cm}^{2}$
- $65 \mathrm{~cm}^{2}$
- $30 \mathrm{~cm}^{2}$
- $32.5 \mathrm{~cm}^{2}$

- 140°
- 160°
- 120°
- 135°
Q. 19 In what ratio is the line segment joining $X(0,3)$ and $Y(4,-1)$ divided by the X-axis?

O $3: 1$

- 2:3
- $4: 3$
- $3: 2$
Q. 20 If the lines $3 x-4 y+7=0$ and $2 x+k y+5=0$ are perpendicular to each other, then the value of k is:
-3/2
- $-3 / 2$
- $2 / 3$
- $-2 / 3$
Q. 21 The line through $(-2,6)$ and $(4,8)$ and the line through $(8,12)$ and $(4,24)$ are:
- parallel
- perpendicular
neither parallel nor perpendicular
Q. 22 In the given figure, $A B C$ is a right angled triangle right angled at B. $D E \| B C, A B=6 \mathrm{~cm}, A E=4 \mathrm{~cm}, A D: D B=$ 1:2. Then $A C=$

- 12 cm
- $6 \sqrt{ } 3 \mathrm{~cm}$
- $6 \sqrt{ } 2 \mathrm{~cm}$
- 10 cm
Q. 23 In the figure of $\triangle A B C, D E \| A B$. If $A D=2 x, D C=x+3, B E=2 x-1$ and $C E=x$, then the value of x is:

© Cerebroid Education

○ $\frac{3}{5}$

- $\frac{5}{3}$
- $\frac{2}{5}$
- $\frac{5}{2}$
Q. 24 If $\triangle A B C \sim \triangle D E F$ such that $3 A B=2 D E$ and $B C=8 \mathrm{~cm}$, then $E F=$

© Cerebroid Education
- 12 cm
- 4 cm
- 16 cm
- 9 cm
Q. 25 In the following figure the value of x is:

- 70°
(85°
- 55°
- 65°
Q. 26 In the figure below the chords BC and DE of the circle have been extended to meet at point I outside the circle. Which of the following statements are true?
$\triangle K C D \sim \triangle K E B$$\Delta \mathrm{DJE} \sim \Delta \mathrm{BJC}$$D E=B C$$K C=K E$
Q. 27 In the given figure, A is the centre of the circle. $\angle \mathrm{FDE}=64^{\circ}$. Then $\angle \mathrm{CBF}=$

(64°
- 32°
- 46°
- 26°
Q. 28 In the given figure, A is the centre of the circle. $\angle F D E=64^{\circ}$. Then $\angle C A F=$

- 128°
- 116°
- 132°
- 140°
Q. 29 A bag contains cards numbered from 1 to 25 . A card is drawn at random from the bag. The probability that the number on this card is divisible by both 2 and 3 is:
- $1 / 5$
- $3 / 25$
- 4/25
- 2/25
Q. 30 From the numbers $3,5,5,7,7,7,9,9,9,9$, one number is selected at random. The probability that the selected number is the mean of the numbers is:
- $1 / 5$
-3/10
00
- 1/10
Q. 31 The angle of depression of a car parked on the road from the top of a 150 m high tower is 30°. The distance of the car from the base of the tower (in metres) is:
- 50 3
- $150 \sqrt{ } 3$
-50 2
- 75
Q. $32 A$ and B are standing on ground 50 meters apart. The angles of elevation for these two to the top of a tree are 60° and 30°. What is height of the tree?
- $50 \sqrt{ } 3 \mathrm{~m}$
$25 \sqrt{ } 3 \mathrm{~m}$
- $\frac{25}{\sqrt{3}} m$
$25(\sqrt{3}-1) m$
Q. 33 A hemispherical bowl of internal radius 12 cm contains a liquid. This liquid is to be filled into cylindrical containers of diameter 4 cm and height 3 cm . The number of containers necessary to empty the bowl is:
- 80
- 96
- 100
- 112
Q. 34

The radii of the bases of two cylinders are in the ratio $3: 4$ and their heights are in the ratio $4: 3$. The ratio of their volume is:
(2:3

- 3:2
- $3: 4$
- $4: 3$
Q. 35

The volume of a right circular cylinder, 14 cm in height, is equal to that of a cube whose edge is 11 cm . The base radius of the cylinder is:
$[\pi=22 / 7]$

- $\quad 2.75 \mathrm{~cm}$
- 5.5 cm
- 11 cm
- 22 cm
Q. $36 \quad P(0,5)$ is invariant under:
reflection in x-axis
reflection in y-axis
reflection in the origin
reflection in $x=5$
Q. $37 \frac{5}{\sec ^{2} \theta}+\frac{2}{1+\cot ^{2} \theta}+3 \sin ^{2} \theta=$

○ 2

- 3

○ 4
5
Q. $38 \frac{\sin A}{1+\cos A}+\frac{\sin A}{1-\cos A}=$

- $2 \operatorname{cosec} A$

